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IDENTIFICATION OF VISCOELASTIC CHARACTERISTICS

OF COMPOSITE MATERIALS ON THE BASIS OF RESULTS

OF AN EXPERIMENTAL AND THEORETICAL ANALYSIS

OF THE DYNAMIC BEHAVIOR OF HEMISPHERICAL SHELLS

UDC 539.3N. A. Abrosimov, V. G. Bazhenov, and N. A. Kulikova

A method is proposed for determining the stiffness and rheological characteristics of composite ma-
terials, which is based on minimizing the disagreement between experimental data and results of
numerical simulations of deformation of hemispherical shells under explosive loading. The damping
characteristics of randomly reinforced polymer materials are analyzed with the use of this method.
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Design of advanced structures frequently involves new composite materials possessing, in contract to metals,
much better dissipative properties. As the composite material and the structure are normally created within a single
technological process, it is necessary to determine the elastic and damping characteristics of the composite material
during its operation within the structure. This problem has to be solved to construct adequate models of material
and structure deformation for subsequent prediction of their behavior under prescribed loads. Conventional methods
of solving this problems, which are based on testing the samples by the method of free decaying oscillations, are often
inapplicable because the measured results are substantially affected by fixation conditions, method of excitation of
oscillations, inhomogeneity of the stress–strain state, and technological difficulties in manufacturing the samples.

One method of determining the parameters of deformation models is the direct use of experimental infor-
mation obtained by loading structural elements. Such methods of identification of materials and models have been
used to determine the effective elastic characteristics of composite materials on the basis of static experiments
[1–4]. Among papers dealing with determining physical and mechanical characteristics in dynamic tests, we can
note only the studies [5, 6] where experimental results were analyzed and the damping characteristics of composite
materials with explosive loading of rings and hemispherical shells were determined. The present paper continues
these studies and describes a hybrid experimental and computational approach to determining the stiffness and rhe-
ological characteristics of a composite material by an example of deformation of dynamically loaded hemispherical
shells. In essence, this method involves solving an inverse problem, which allows obtaining the characteristics of
the material and model used in calculating a particular structure. The method of identification of the stiffness and
rheological characteristics of composite materials is based on comparing information obtained in an experiment and
the numerical solution of the direct problem of viscoelastic dynamic deformation of a hemispherical shell.

1. We consider a hemispherical shell in the Gaussian curvilinear coordinate system αi (i = 1, 3) whose Lamé
coefficients and principal curvatures are

H1 = A1z1, H2 = A2z2, H3 = 1, k1 = k2 = k = 1/R. (1)
Here A1 = R, A2 = R sin α1, z1 = z2 = z = 1 + kα3, α1 is the central angle determining the position of the point
on the shell meridian, α3 is the distance between the point and the mid-surface of the shell, and R is the radius of
the hemispherical shell.
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As the structural elements manufactured from composite materials are inhomogeneous, possess lower shear
stiffness than metals, and are not always thin-walled, their stress–strain state should be described by involving
nonclassical shell theories.

To construct a resolving system of the nonclassical theory of hemispherical shells, we use the principle of
possible displacements combined with the series method [7]. The displacement-vector components ui (i = 1, 3) are
approximated by finite series over the normal coordinate α3:

ui(α1, α3, t) = u0
i (α1, t) + u1

i (α1, t)x +
N∑

n=2

un
i (α1, t)Pn(x). (2)

Here −1 � x = 2α3/h � 1; Pn(x) are the Legendre polynomials.
With allowance for Eqs. (1) and (2), the strains of a hemispherical shell can be presented as

e11 = (ε11 + χ11x + χn
11)/z, e22 = (ε22 + χ22x + χn

22)/z,

e33 = χ33 + χn
33, e13 = (ε13 + εn

13)/z + χ13 + χn
13,

(3)

where

ε11 = k
(∂u0

1

∂α1
+ u0

3

)
, ε22 = k(u0

1 cot α1 + u0
3), χ11 = k

(∂u1
1

∂α1
+ u1

3

)
,

χ22 = k(u1
1 cot α1 + u1

3), χn
11 = k

( N∑

n=2

∂un
1

∂α1
Pn(x) +

N∑

n=2

un
3Pn(x)

)
,

χn
22 = k

(
cot α1

N∑

n=2

un
1Pn(x) +

N∑

n=2

un
3Pn(x)

)
,

χ33 =
2
h

u1
3, χn

33 =
2
h

N∑

n=2

un
3P ′

n(x), ε13 = k
( ∂u0

3

∂α1
− u0

1

)
,

εn
13 = k

(∂u1
3

∂α1
x +

N∑

n=2

∂un
3

∂α1
Pn(x) − u1

1x −
N∑

n=2

un
1Pn(x)

)
,

χ13 =
2
h

u1
1, χn

13 =
2
h

N∑

n=2

un
1P ′

n(x).

The relation between stresses and strains is established on the basis of the Maxwell–Thompson rheological
equations, which can be presented in our case in the following form:

σii =
3∑

j=1

C0
ije

0
ij (i = 1, 3 ), σ13 = G0

13e
′
13,

e0
ii = eii −

(
1 − C∞

ii

C0
ii

) t∫

0

R(t − τ)eii(τ) dτ,

e0
ij = ejj −

(
1 − C∞

ij

C0
ij

) t∫

0

R(t − τ)ejj(τ) dτ,

(4)

e′13 = e13 −
(
1 − G∞

13

G0
13

) t∫

0

R(t − τ)e13(τ) dτ.
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Here C0
ij , C∞

ij , G0
13, and G∞

13 are the instantaneous and integral stiffness characteristics, R(t) = β e−βt is the
relaxation kernel, β is a parameter characterizing the relaxation time, and t is the time of the process. The
viscoelastic characteristics in Eq. (4) form the vector b = (E0

11, E
∞
11 , E0

22, E
∞
22 , E0

33, E
∞
33 , G0

13, G
∞
13, ν12, ν13, ν23, β)t to

be determined in what follows.
To derive the equations of motion of a hemispherical unfixed shell loaded by an outward pressure pulse,

we use the variation equation of dynamics [7], which can be written in the following form with allowance for
approximations (2) and the geometric (3) and physical (4) relations derived on the basis of these approximations:

π∫

0

[
kN11

∂ (δu0
1)

∂α1
+ k(N22 cot α1 − Q1)δu0

1 + kQ1
∂ (δu0

3)
∂α1
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3
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∂ (δu1
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∂α1

+
(
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2
h
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h
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11

∂ (δun
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+
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1

+
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n=0

(
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−
π∫

0

[
F 0

3 δu0
3 + F 1

3 δu1
3 +
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Fn
3 δun

3
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dα1 = 0. (5)

In these equations,

N11 =
h

2

1∫

−1

σ11z dx, N22 =
h

2
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−1

σ22z dx,

M11 =
h

2
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414



Mn
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h

2

1∫
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h
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Applying the standard variation technique to Eq. (5), we obtain the equations of motion for the shell

∂ (N11 sinα1)
∂α1

− N22 cosα1 + Q1 sin α1 =
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and the zero boundary conditions for α1 = 0, π:

N11 = 0, Q1 = 0, M11 = 0, M13 = 0, Mn
11 = 0, Mn

13 = 0 (n = 2, N ). (7)

The initial conditions that should be satisfied by the solution of the above-posed problem are also zeros:

un
1 (α1, 0) = 0, u̇n

1 (α1, 0) = 0, un
3 (α1, 0) = 0, u̇n

3 (α1, 0) = 0 (n = 0, N ). (8)

415



P3
*

t* t

P3

Fig. 1. Loading schematic (P ∗
3 = 0.3 MPa and t∗ = 0.4 · 10−4 sec).

Relations (2)–(8) form a closed system of integrodifferential equations necessary to study unsteady processes
of deformation in non-thin hemispherical shells made of viscoelastic composite materials. The accuracy of the
resultant system is determined by the number of terms retained in the approximating series (2). The formulated
initial-boundary problem is solved on the basis of an explicit variation-difference scheme [7].

2. The problem of determining the stiffness and rheological characteristics reduces to the problem of non-
linear programming. Let there be a numerical solution of the above-formulated initial-boundary problem of the
dynamic behavior of a composite hemispherical shell in the form of time dependences of circumferential and merid-
ional strains on the outer surface of the shell. We assume that strain tensograms obtained in experiments are
available. As the computed and experimental strain oscillograms are conventionally monoharmonic decaying oscil-
lations, we can determine the maximum and minimum values of the numerical em

ii and experimental e∗m
ii strains

and the corresponding times tmi and t∗m
i (m = 1, M ) when these strains are reached.

Below we consider a parametric version of the problem aimed at identifying the parameters of the model of the
viscoelastic behavior of the shell material. We have to find a set of parameters (vector) of the physical relations (4)
b∗ = (E0

11, E
∞
11 , E0

22, E∞
22 , E0

33, E
∞
33 , G0

13, G
∞
13, ν12, ν13, ν23, β)t for which the mathematical model (2)–(8) describing

the dynamic behavior of viscoelastic hemispherical shells offers the best fit for experimental data. As a result, the
problem reduces to minimizing the objective function of several variables, which is the sum of root-mean-square
deviations of theoretical and experimental values of strain [9]:

C(b) =
K∑

k=1

{ M∑

m=1

[ 2∑

i=1

((em
ii − e∗m

ii

e∗ii

)2

+
( tmi − t∗m

i

t∗
)2)]}

k
.

Here K is the number of points for which experimental data on strain are available, e∗ii are the maximum values of
circumferential and meridional strains in the first half-period of oscillations, and t∗ is the time of the process. The
boundaries of the search domain and the restrictions imposed on the values of physical and mechanical characteristics
of materials follow from the general physical principles and experimental data [6, 10].

In choosing the method for solving the problem of identifying the viscoelastic characteristics of composite
materials, one has to take into account a number of factors: sensitivity of optimization methods to errors in
experimental measurements of strains, difficulties in computing the derivatives of the objective function, numerous
extreme points of the objective function, and high computational costs of forming the latter. Because of these
difficulties, we chose a combination of methods of adaptive random search and deterministic direct algorithms of
local optimization, which imply that a nonlocal approximation of the function is constructed on the basis of its
values in a number of points [11].

3. The applicability of the proposed approach was estimated by an example of axisymmetric deformation
of a hemispherical shell (Fig. 1) of thickness h = 0.006 m and radius R = 0.049 m, which is made of a randomly
reinforced polymer material and loaded by an outward pressure pulse [8].

The computations implied a preliminary analysis of sensitivity of the objective function in terms of design
variables, which was aimed at estimating the possibility of determining the parameters of the governing relations in
this problem. In addition, to improve the computation efficiency, the stiffness and rheological characteristics were
chosen on consecutively expanding time intervals.
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Fig. 2. Oscillograms of circumferential strains on the outer surface of an isotropic viscoelastic shell (a)
and an orthotropic viscoelastic shell (b) near the equator: (a) E0 = 61 GPa, ν = 0.33, E∞ = 54.9 GPa,
and β = 20,000 sec−1; (b) E0

1 = 50.7 GPa, E∞
1 = 41.7 GPa, E0

2 = 63.7 GPa, E∞
2 = 57.3 GPa,

E0
3 = 47.2 GPa, E∞

3 = 39.7 GPa, ν12 = 0.22, ν13 = 0.26, ν23 = 0.28, G0
13 = 43.35 GPa, G∞

13

= 35.2 GPa, and β = 18,300 sec−1; curves 1 and 2 refer to the experimental data of [6] and the computed
results, respectively.

TABLE 1

Shell
δ

δ0 δ∗
n = 3 n = 5 n = 7 n = 9 n = 11 n = 13 n = 15

Isotropic 0.5707 0.1768 0.1685 0.2714 0.1223 0.1484 0.2101 0.2383 0.2166
Orthotropic 0.3869 0.2128 0.1598 0.2331 0.1635 0.1676 0.1936 0.2168 0.2166

The results of the experimental investigations of [6] are compared with the theoretical computations based
on the above-given parameters of the physical relations (4) in Fig. 2. The experimental and theoretical results are
in good qualitative agreement and reasonable quantitative agreement.

Based on the strain oscillograms shown in Fig. 2, we analyzed the dependence of the logarithmic decrement
of decay δ on the time interval of the deformation process (number of oscillation cycles). The decay decrement δ as
a function of the number of oscillation periods n, the mean theoretical value δ0, and the experimentally obtained
value δ∗ are listed in Table 1.

It follows from the analysis of the data obtained that the decay decrement depends on the interval used to
compute it. The mean value of the decay decrement δ0, nevertheless, is in good agreement with the experimental
value δ∗ [6]; the computed results for the orthotropic model of the behavior of the shell material almost coincide
with experimental data.

The dependence of the logarithmic decrement on the dimensionless wall thickness of a hemispherical shell
R/h was analyzed. Table 2 gives the mean decrement in the equatorial region for different values of R/h. As
the shell thickness decreases, the decrement first increases substantially and then becomes almost constant (for
R/h � 20). The result obtained agrees with similar data for conventionally used materials [10].
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TABLE 2

R/h δ

4 0.1033
8 0.2260

15 0.3770
30 0.3675
50 0.3698

Thus, the experimental and theoretical analysis of unsteady deformation of hemispherical shells made of a
randomly reinforced polymer material testifies that the proposed method of identification of dynamic viscoelastic
properties of composite materials is fairly efficient.
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